

Performing Cross Browser Testing is essential for ensuring that applications look and

function correctly across different browsers, devices, and operating systems. As a software

testing consultancy firm, offering Cross Browser Testing as a core service helps us deliver a

consistent, user-friendly experience to all end users—no matter how they access the app.

Here’s how our firm can strategically and efficiently perform cross browser testing to boost

quality:

Objectives of Cross Browser Testing

Verify UI consistency and layout rendering

Ensure functionality works across different environments

Detect browser-specific bugs, rendering issues, or JavaScript errors

Test for responsive design on various screen sizes

Validate performance and load times across browsers

Step-by-Step Approach for Cross Browser Testing

 1. Define the Scope

Identify target browsers based on client’s user analytics (e.g., Google Chrome 90+, Safari,

Firefox, Edge, IE11 if needed).

Include mobile browsers (Safari on iOS, Chrome on Android).

Decide the depth of testing (e.g., full regression vs smoke test).

2. Prioritize Browsers and Devices

Use real user data (from Google Analytics or product telemetry) to determine:

Tier 1: Most-used browsers (must work flawlessly)

Tier 2: Less-used, but still important (basic functionality)

Tier 3: Legacy or niche browsers (limited testing or disclaimers)

 3. Set Up the Testing Environment

Use a mix of:

Real devices for high-fidelity validation

Emulators/Simulators for quick checks

Cloud-based platforms for scalability

 Popular tools:

BrowserStack

Sauce Labs

LambdaTest

CrossBrowserTesting.com

Selenium Grid (custom setup)

 4. Automate Where Possible

Automate common test flows using:

Selenium WebDriver with browser capability configurations

TestCafe, Cypress (with plugins for cross-browser support)

Playwright (great for testing across Chromium, Firefox, WebKit)

 Use parallel test execution to save time and get faster feedback.

5. Manual Exploratory Testing

Perform manual visual and functional checks on real devices for:

UI rendering

Font rendering issues

Hover, scroll, and interactive element behaviors

Media playback (video/audio), file downloads

6. Check for Compatibility Issues

Focus on:

HTML/CSS rendering differences

JavaScript engine quirks

CSS grid/flexbox support

Font scaling, padding, margin differences

Form inputs and dropdown behaviors

7. Document and Report Issues Clearly

Provide screenshots or screen recordings of issues

Highlight browser-specific bugs with environment details

Suggest workarounds or CSS/JS fixes

 Sample report format:

Browser OS Issue Screenshot Severity Status

Safari 13 macOS Button misaligned Attached Medium Open

 8. Integrate with CI/CD

Use CI/CD pipelines to run cross-browser tests automatically:

Trigger tests on pull requests or nightly builds

Fail builds if high-severity cross-browser issues are detected

 Tools:

GitHub Actions + BrowserStack

Jenkins + Selenium Grid

GitLab CI + Sauce Labs

Value We Bring as a Testing Consultancy

Capability Benefit for Client

Structured Test Matrices Clear browser/device coverage

 Tool Expertise Save setup time, reduce costs

Automated + Manual Strategy Balanced and reliable results

Capability Benefit for Client

 Visual Regression Testing Detect pixel-level UI issues

Professional Reporting Fast decision-making for devs and PMs

🛠 Want to Offer Premium Cross-Browser Testing?

We can offer:

Visual regression testing with Applitools or Percy

Accessibility testing (WCAG compliance across browsers)

Network throttling tests for low-bandwidth conditions

Localization checks across browsers and devices

